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Abstract

Efforts are made to relate the depolarized light scattering spectral power density to

the dynamic shear compliance spectrum of a viscoelastic liquid. Generalized Langevin

equations are used to describe the dynamics and coupling of reorientation and translational

motions. It is shown that in the presence of the coupling, the depolarized scattering

spectrum consists of two components, one is associated with the reorientational motion, and

the other with the viscoelastic relaxation of the solution. Methods to obtain the dynamic

shear compliance from the depolarized light scattering spectrum are described. It is also

shown that in the limit of very slow reorientational motion, the depolarized light scattering

spectrum is proportional to the imaginary part of the dynamic compliance spectrum, a result

predicted by the Pockels photoelastic law.
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1. Introduction

Relating the dynamic light scattering spectral density to the mechanical relaxation

spectrum is an important area of research. Making the correlation brings about the

unification of information that is currently obtained separately by the two techniques, hence

enabling one to seek the desired physical data with one technique when the other becomes

inconvenient or failed. The dynamic light scattering spectral density in a bulk liquid occurs

as a result of the thermally induced modulation of the dielectric constant tensor due to local

density and orientational fluctuations of molecules inside the scattering volume. If the bulk

liquid is a polymer, the local density and orientational fluctuations are associated mainly

with the motion of chain segments. On the other hand, mechanical relaxation occurs as a

result of segmental motion and as such it is expected to be related to dynamic light

scattering. Both the local density fluctuations and the orientational fluctuation contribute

to the polarized (VV) component of the scattered light, whereas the depolarized (VH) light

scattering intensity is associated with the orientational fluctuation.

In an one component system, it has been shown that the dynamics of density

fluctuation is equivalent to the relaxation of longitudinal compliance. 1 Consequently,

dynamic light scattering serves as an alternative technique to measure the longitudinal

compliance spectrum, which has generally been obtained by a mechanical relaxation

spectrometer.

In the binary polymer solution consisting of a polymer and a small molecular weight

solvent, owing to mutual diffusion arising from osmotic pressure fluctuations, the isotropic

component of the light scattering spectrum is dominated by the concentration fluctuation.

However, because of the mixing of the concentration fluctuation and viscoelasticity, the

viscoelasticity that affects the mechanical properties of the polymer solution is also expected
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to contribute to the dynamic light scattering spectrum. The effect of viscoelasticity on the

dynamic light scattering spectrum of the binary polymer solution was recently analyzed by

this author.2' 3

In depolarized light scattering (DLS), the scattered intensity arises from the

anisotropy fluctuations of the dielectric constant tensor as a result of molecular

reorientation.4 Because of the technological importance, attempts have been made to relate

the DLS spectrum to the dynamic mechanical properties. Hess attempted to relate the DLS

spectrum to the mechanical relaxation spectrum by using the Pockels photo-elastic law, in

which the off diagonal part of the optical impermeability tensor is set proportional to the

shear strain tensor.5 Since the Pockels photo-elastic law completely neglected the

contribution due to molecular reorientation, it is only applicable to the description of the

deformation of the condensed medium owing to acoustic waves at high frequency at which

molecular reorientation fails to follow. In viscous molecular liquids, it is well known that

reorientation of molecules makes a dominant contribution to the DLS intensity.6 '7 In the

viscoelastic region, both the molecular reorientation and overdamped shear waves contribute

to the DLS spectral density and they can be probed by the dynamic light scattering

technique.8,9  For viscoelastic liquids, such as polymer melts and polymer solutions,

measurements of the dynamic shear modulus and compliance are of technological

importance. 10 It is thus of interest to find a method with which information concerning the

dynamic shear compliance and shear modulus data can be extracted by the optical means

using the DLS spectrum. Focusing on this objective, we present in this paper the result of

a theoretical effort which succeeds in correlating the DLS spectrum with the dynamic shear

compliance of a viscoelastic liquid. The experimental verification of the theoretical result

will be the subject of our future publication. In section II we provide the theoretical
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background needed for carrying out the analysis. In section III we consider the coupled

motions of the off-diagonal part of the polarizability density and translation in the

,,iscoelastic liquid. In section IV we show how the dynamic shear compliance can be

obtained from the depolarized light scattering spectrum.

11. Theoretical Background

Consider a beam of electromagnetic radiation with wave vectork i and frequency wi

propagating through a medium characterized by an anisotropic dielectric constant tensorf

consisting of an average part e and a fluctuating part bf.

The spectral power density of the scattered light Isi (g.,o) is given by4

I~~ dt e-io <czj(1,t) m*(q)>(1

where S. is the scattering vector given by g = s - k i ; ks is the amplitude of k , the wave

vector of the scattering light, and is equal to 27rn/. 0. Here n is the refractive index of the

medium which is related to 6 by n = (6)1/2; '0 is the wavelength of the incident light in

vacuum. r is the radial distance from the scattering center to the detector. The quantity

Sesi (pa) is the projection of the fluctuating part of the dielectric constant tensor onto the

incident light polarization indicated by Rn and the scattered light polarization indicated by

A

n5.

6esi(., ca) is related to the polarizability density ai (q, w) by

e.,((I, w) = 4 n a.,(%,ca) (2)

If the molecules are weakly coupled electronically, then the polarizability density tenser
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component asi (,t) given above can be written as:

az,(q,t) = a '(t)expiq.r,(t)j (3)

where asi(k) is the local field corrected polarizability tensor component of molecule k

located at positions rk. Both ai(k) and rk depend on time because of molecular

reorientation and translational diffusion. Owing to Eq. (3), measurements of the spectral

power density Isi (q, j) involving with different polarization vectors of the incident and

scattered light beams will yield information about molecular motion in a dense fluid.

Using the scattering geometry with the incident light propagating along the x-axis

and polarized along the y-axis of the laboratory coordinate system, it can be shown, for a

system consisting of identical optically anisotropic molecules dissolved in an optically

isotropic solvent, that the linear polarizability density involved in depolarized (VH) light

scattering at wave vector _g has two components:4

ar. (q,t) = ay,. (q,t) cos (0/2) + ayx (q,t) sin (0/2) (4)

where O is the scattering angle, and q is the amplitude of the scattering vector given by

47rnsin(0.2) The expressions for ayz and axy for molecules of arbitrary shape are most

conveniently given in terms of rotational matrices.4,11 However, for optically symmetric top

molecules, ayz (9,t) and axy (9,t) are given by:

C z (g,t) = , n 0) nz 0) e . (5)
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ay(,t) = zn(j)n(j) el -rj (6)

where = a_, a, and a_ being the components of the local field corrected molecular

polarizability parallel and perpendicular to the symmetry axis, respectively. The position
A

coordinate and orientation of the symmetry axis of molecule j are labeled byrj and n (j),

respectively. The quantity na(j) is the projection of the unit vector representing the
A

symmetry axis of molecule j onto the laboratory a-axis, a = x, y, z. Both rj and n (j) are

time dependent, but we do not explicitly write out the time dependence of r- and n j) in

Eqs (5) and (6) for brevity.

Using Eq. (4) one can readily show that the depolarized (VH) spectrum for a

rotationally isotropic medium, is given by:

m*

IVH (qs) = (1/2 7r) f dt e iwt { <a, (q,t) a) * (q)> cos2(0/2)

+ <axy (q,t) axy (q)> sin 2(O/2)} (7)

where the cross terms, <aYz (g,t) a, (q)> and <acy (g,t) a), (q)>, do not contribute to

the spectral intensity because of different reflection symmetry for a and a with respect

to the yz plane. It should be noted that Eq. (9) is valid for molecules with arbitrary

geometry, not being restricted to symmetry top molecules.

III. Coupling of Rotation and Translational Motions

In order to calculate the time correlation functions associated with the VII spectrum,

we need to consider the types of molecular motion that affect the time dependence of

arz (q,t) and a.y (q,t). Andersen and PecoraU2 considered this problem in 1971 in the theory

of the depolarized scattering spectrum from overdamped shear wave in a viscous molecular
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liquid." They used the symmetry consideration and concluded that the conserved

hydrodynamic variables, such as number density and energy density will not couple to both

aZ and a W However, because of identical reflection symmetry associated with the variables

to Py and a Y, the y component of the linear momentum density Py will couple to ayz. From

this, they then constructed a microscopic theory to describe the dynamics of the coupled

variables using the technique of generalized hydrodynamics. 12

To relate the viscoelastic effect to the depolarized light scattering spectrum of the

fluid, we generalize in this paper the two-variable theory of Andersen-Pecora by including

the memory effect in the relaxation kernel. We use a vector variable A(g,t) consisting of

a set of two dynamic variables, one of which is ayz (q,t) and the other is Py(q,t). As given-

by Eq. (2), the a)z(q,t) variable is related to the cooperative orientational motion of

molecules within the scattering volume:

A(q,t) a Pa (q,t) (8)
PY (q,t))

where Pyq,t) is the y-component of the linear momentum density given by:

Py(q,t) = E 7ry )ei.-rj (9)

Here 7Yr)) is the y-component of the linear momentum of molecule j. The time dependence

in 7ry(i) andrj are not explicitly written out. For an isotropic fluid system, the physical

property does not depend on the direction of q; only the amplitude is considered.

We need next to obtain an equation for the correlation function < ayz(g,t)oy z (q)>

in order to calculate the depolarized light scattering spectrum. Having chosen the set of

dynamic variable A(g,t), we can proceed to obtain the equations of motion for a YZ and PY.

Owing to the fact that a is coupled to Py we shall obtain two coupled equations. However,

Page 8



in contrast to the treatment of Andersen-Pecora, we keep the memory effect in the

generalized Langevin equations. The memory effect plays an important role in determining

the viscoelasticity of the liquid. The various essential steps needed for obtaining the

generalized Langevin equations for aY. and Py are given in the monograph by Wang," and

they are briefly described in Appendix I.

From Appendix I, the equations of motion for a .Z and P y in the small q limit are

given by:

t t

a,(q,t) = -f dt K1 ()ccz(q,t-x)-iq f d-K@2(r)Py(qt-T) (10)

0 0

i, (qt) i dr2(oa(tT -q' foK22(-)Py(q,t--r)11

where the dots above a and Py indicate taking the time derivative. The explicit

expressions for Kj(r) are given in Appendix I. In Eqs. (10) and (11), we have neglected the

random force terms as these terms vanish upon taking the ensemble average with respect

to the initial variables when calculating the time correlation functions. If the various Kj (r)

terms relax significantly faster than the dynamic variables aYZ and Py, then the Markov

approximation can be used to simplify Eqs (10) and (11). If the Markov approximation is

assumed, then Eqs (10) and (11) reduce to:

=,(qt) -r rL,(qt) -iqpP,(q,t) (12)

PY(q,) -q -q 1 P (q,r) + iqp' a w (qt) (13)
Pm

where r is the orientational relaxation rate equal to the time integral of K1 1(r); p. is the
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mass density and r7 is the shear viscosity of the liquid which is proportional to the time

integral of K22(r); g and g' are rotation-translation coupling constants associated with the

time integrals of K12(r) and K21(r), respectively. Equations (12) and (13) are equivalent

to the equations used by Anderson and Pecora for the calculation of the depolarized light

scattering spectrum of the viscous molecular liquid.1 " Since we do not assume the Markov

approximation in the present work, the viscoelastic response of the liquid is retained in Eqs

(10) and (11).

To proceed, we need to solve the coupled equation given by Eqs. (10) and (11).

These are coupled differential-integral equations of the convolution type and can be solved

by using the usual Laplace transform technique.

Taking the Laplace transform of Eqs (10) and (11) and after rearranging, we obtain:

S+C iqfR12 I[&,(qs)] [= c(q)] (14)
-iqI 1 l s + Lq2 Plk (qs)] [P,(q)]

A A

where ayz (q,s) and Py (q,s) are the Laplace transform of ayz (q,t) and Py (q,t), respectively.

They are given by:

ar,(q,s)  fc .(qt)e-dt (I5a)

Py(qs) = f Py(qet)¢-dt (15b)

To obtain the correlation functions, we first invert Eq. (14) to obtain the solution.

We next multiply cz(q,s) by its initial value az(q), and Py(q,s) by its initial value Py°(q)

and then take the ensemble averages for both of them. The results are:
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C:(qs)_< (qs)a;(q)> I (s+qkn)kTX. (16a)
A(q)

,_(q,s) <P(qs)P*(q)>- 1s +k,1)NmkT (16b)
A(q)

where N is the total number of molecules and m is the mass of the molecules. The other

quantities are given by:

A(q) = Cs +fK1,,) (s +q2K) -q2 k12 1  (17a)

fc,(s)- 1 f•d ,() rs (17b)
kTX,, Zo~- = (0& Q-rs

k=s=-Lfo dte-l <aYr.(t)a>Asjm(1c

A A

We can combine K12 (s) and K21 (s) and introduce a quantity C (s):

-K12 (s) K. (s) = (s)"(s) p (7d)

The quantity C(s) has the same dimension of viscosity and will be referred to as the dynamic

coupling viscosity as its presence arises from rotation-translational coupling. The dynamic

coupling viscosity C is easily shown to be given by:

C(s)I f dte' <iorz(t)yz,(O)>Q 12 (18e)

The quantity x. appearing in Eqs (17b) and (17e) is the static polarizability

susceptibility defined in Appendix I.
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IV. Depolarized Light Scattering Spectrum and Dynaamic Modulus

We now relate r(s) to the dynamic shear (stress) modulus G (a). Using Eqs (16a)

and (17c) and setting s = iw, we can rewrite the momentum density correlation function

given in Eq. (16b) as:

)= NmkT (18)
[iw +(q2/pz)fi] + [q2Cr/pj]/[iw IF]

At zero frequency, the dynamic coupling viscosity C vanishes, and one obtains the

limiting hydrodynamic result for all molecular fluids:

lir Cp(qij) = (NmkT)/(q2/p)rg (19)
(4'0

where 77s is the macroscopic shear viscosity equal to: 13

11 = lim [G"1(w)/w] (20)
C-0

At finite frequency, the dynamic coupling viscosity is finite, and from Eqs.(18) and (19) we

expect that

[fMCW) + Ci)] = 6(w) (21)

A A

where G(w) is related to the dynamic shear modulus G* by; iw G (w) = G (w). The

dynamic modulus can be separated into a real G'(w) and an imaginary part G"(v):

G'(v) = G'(w) + iG"'(c) = i f dte-'WtG(t) (22)
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In the limit of small frequency, as given by Eq (20) G"(ca)/w becomes the

macroscopic viscosity but GQ(w)/w vanishes.13

On the account of Eq. (21), we can rewrite Eq. (17a) as:

A (i) = (iO +)i + q q2 i) C (23)

and

C2 (i () = [ +(q2/p,)(G-)]kTx, (24)
(i ( + W+ (q/p m) 6 - (q/ p J [~ic((i w +1']

We expect in general the dynamic coupling viscosity C to be much less than the dynamic

AA

shear viscosity G. Thus, we proceed by expanding Eq. (24) in power series of C/G, and

retain only the linear term in C to arrive at:

C (ic) = -. 1 (- ) cr kTX. (25)

For the fluid in the viscoelastic regime, the macroscopic viscosity is high so that the

molecular reorientation rate is slow. In addition, we shall also neglect the dispersion of the

collective reorientation rate r and the dynamic coupling viscosity C; i.e. we shall assume that

r and C are real and independent of frequency in the frequency window of the dynamic light

scattering experiment. This assumption is justified experimentally.9

We now combine Eq. (25) with the xy component of the scattering spectrum (c.f. Eq.

(7)) and obtain for w > r, the spectral power density of the depolarized Rayleigh scattered

light as:
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SvH(q,o) = Iv(q,j)/(kTx.)

2 r + (q2)( ) coS _a Re - ica . (26)

(a - - 2  p, 2  2 - 2+q2G *( )/pml

where G" (w) is the dynamic shear modulus given in Eq. (22): the symbol Re indicates

taking the real part of the expression within the curvy brackets.

One notes in Eq. (26), and more generally Eq. (18), the fact that the dynamic shear

modulus enters the depolarized scattering spectrum is due entirely to the presence of

rotation-translational coupling. If the dynamic coupling viscosity C vanishes, then the

depolarized spectrum becomes a simple Lorentzian, with the half-width at the half-height

equal to r, the collective reorientational rate. This is consistent with the previous result.6'7

For the viscoelastic liquid, the molecular reorientation rate is slow and the Lorentz term is

very narrow. In addition, one also notes that the second term in Eq.(26) containing the

dynamic shear modulus term is proportional to cos2 0/2. Thus, the dynamic shear modulus

contribution is pronounced at small scattering angles, but it vanishes when the scattering

angle 8 equals 1800. However, except for low frequencies, one notes that the second term

is proportional to q2, it also becomes small at small scattering angle. Hence, when the

factors of q2 and cos2 0/2 are combined, one arrives at the conclusion that 8 = 90* is the

optimum scattering angle to observe the shear modulus contribution to the depolarized

scattering spectrum. However, if frequencies are low, the q2 factor is canceled out by the

q2 term in the denominator and in this situation the DLS spectrum becomes independent

of the scattering angle. But, due to the cos2 0/2 factor, the intensity of the scattered light

associated with the shear modulus is most pronounced at small scattering angle.

Returning to Eq. (26), we separate G" into real and imaginary parts. By taking the

real part of Eq. (26) and after carrying out some algebra, we obtain the DLS spectrum as:
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" + (q) , r(cos2) ) (q2/pm)G" (27)VH (C1)- W) q2 + i. P" 2 (-a 2 +q2G'Ip) 2 +(q2G"Ip,,,)2

If the depolarized light scattering experiment is carried out by using an electronic

correlator, whose dynamic range is usually less than 1 MHz, then for polymer solutions with

a storage modulus greater than 102Pa, the conditions q2 G'/pm > > W2 is valid over the

entire dynamic range of the correlator. In such a circumstance, the term W 2 in the

denominator of the second term of Equation (27) can be neglected, and as a result, Eq. (27)

reduces to:

SH(q,w) 2 r + cr (cos0 )Ja(o)/Go (28)
~+1-1 2

where J"(o) is the imaginary part of the dynamic shear compliance, given by

J/, (G)) = G"(ca) (29)
( /(1 2 + [ I( ) 2

Using the definition of J(w),10 we can transform Eq. (28) back to the time domain as:

gvH(q,t) =-e + mPcosZO) [J,'-JoI] (30)

where J.0 is the steady state shear compliance, and J(t) is the shear creep compliance.

gvH(q,t) is the normalized VH polarzability correlation function. Modem dynamic light

scattering experiments often employ a digital electronic correlator and directly measures the

time correlation function gVH (q,t). Equation (30) is more convenient than Eq. (28) which

deals with the spectral power density.

Equation (28) or Eq. (30) is an important result; it shows that the dynamic shear

compliance can be obtained from the DLS spectrum. Owing to the presence of rotation-

translation coupling, the DLS spectrum of an optically anisotropic viscoelastic liquid will

consist of two components. One is associated with reorientational motion, and the other

with the viscoelasticity of the liquid. The viscoelastic component is proportional to the
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imaginary part of the dynamic shear compliance. This result is quite analogous to that

previously obtained for the polarized scattering spectrum, in which it is shown that the

density fluctuation spectrum as probed in isotropic scattering is proportional to the

imaginary part of the dynamic compression compliance. 1 However, due to the presence of

reorientation motion which in some cases contributes significantly to the DLS intensity, the

depolarized light scattering spectrum is proportional to the imaginary part of the dynamic

shear compliance only i the collective reorientation rate r is so small that it can be

neglected. If the reorientational rate is neglected, then one obtains a result identical to that

obtained by using the photo-elastic law,5 and the factor Cr becomes the Pockels'

photoelastic constant.

If the reorientational dynamics contributes to depolarized light scattering, then the

reorientational effect has to be separated out in order to use depolarized light scattering as

a technique to obtain the dynamic shear compliance data. To separate the reorientational

contribution to the spectrum, one can first carry out the DLS experiment at large scattering

angle near 1800. As one notes in Eq. (28), the spectrum at large scattering angle is mainly

due to reorientation. After obtaining the angular independent, the reorientational spectrum

(or the correlation function, Eq. (30)) can be subtracted off from the total DLS spectrum

to obtain the viscoelastic spectrum.

An alternative method can also be used. This method allows one to obtain both the

real and imaginary parts of the dynamic shear compliance spectrum. We now describe this

alternative method of separating the reorientational contribution to obtain the compliance

spectrum.

From Eq. (16a) we take the inverse of CY (q,s) and obtain by setting s = ica,
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kTX, iar(q2c r)~kT ~ = ii c+ 31

f dte 'i'CY2(qt) PM -2 +(q2/p )G (31)

To obtain Eq. (31), we also neglect the higher order terms in C due to the fact that C is in

general much less than Ca

We next write the one sided Fourier transform of the polarizability time correlation

function appearing in Eq. (31) as:

1 f "dte 1 " C7(qt) = I(q,w)-iH(qw) (32)
k'rXa 0

Here I (q,ca) and I-y (q,w) are the cosine and sine transforms of the normalized correlation

function C YZ (q,t), respectively. The cosine transform of C,Yz (q,t) is proportional to the

yz component of the depolarized light spectrum given in Eq. (7).

Using Eq. (32) and expressing G" in terms of real and imaginary parts, we obtain

from Eq. (31)

1 = i w + r + ( q 2  ( ) _ _ _ _( 3 3)2 (33)
I(q,w) -iH(q,(a) Pm _2 +(11)(G+iG)

Pm
Equating the real and imaginary parts on both sides of Eq. (36) and also neglecting the o2

term, we obtain for the real part

A(w) 212 = r + c cr /'(o) (34)

and for the imaginary part

B(a) H Hj- = (a +caroJ'c) (35)

where the frequency dependence for I and H in Eqs. (33) and (34) are not written out

explicitly; J" and J" are real and imaginary parts dynamic shear compliance J" (w), given

by
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j.( ) = J/(W)-ij//(C) (36)

Dynamic shear modulus G" (w) and dynamic shear compliance J" (co) are related by the

equation
1 °

= 1 (37)

One notes that B(c) vanishes at c = 0. Equations (34) and (35) can be used to

separate the reorientational rate r from the DLS spectrum. The method consists of

computing the sine and cosine transforms of the polarizability correlation function that one

measures by using a digital electronic correlator. From these one can calculate A(ca) and

B(w). From the plots of A (w) as a frequency of a one obtains r, as an intercept. After

obtaining r, a one can substitute it into Eqs. (34) and (35) to calculate CJ" and CJ' as a

function of frequency.

However, as one notes in Eq. (7), the depolarized Rayleigh spectrum has two

components. The component proportional to the sin2 0/2 term is only associated with the

rotational dynamics. The contribution of this term must be either subtracted off or

minimized in order to use the results given in Eqs. (34) and (35). This can be accomplished

by carrying out the DLS experiment at a small scattering angle.

In conclusion, we show that it is possible to use the method of the DLS experiment

to obtain J and J' or J(t) of a viscoelastic liquid. We have used the generalized Langevin

equations to analyze the connection between the DLS spectrum and dynamic shear

compliance. We have shown that, owing to rotation-translational coupling, both

reorientational motion and viscoelasticity contribute to the DLS spectrum. In the limit of

negligible molecular reorientation, the DLS spectrum is shown to be proportional to the

imaginary part of the dynamic compliance spectrum, a result predicted by the photoelastic

law. When both the reorientational motion and viscoelasticity contribute to the DLS
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intensity, we have provided methods for separating the reorientational component from the

DLS spectrum to obtain the dynamic shear compliance data.
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Appendix I

Generalized Hydrodynamic Theory of Coupling of Rotational

Motion to Shear Waves

Given the coupled dynamic variables a). (q,t) and Py (q,t) defined in Eqs. (3) and

(9), we express then as a column matrix A(q,t).

,= (q't)l (A-i)

Py (q,t) ]

where in a,, (q,t) is the yzth component of the polarizability density tensor. Its time

dependence is due to translation and it describes the reorientational motion of a collection

of molecules inside the scattering volume. Py (q,t) is the y component of the linear

momentum density for the colection of molecules inside the scattering volume. We follow

the technique of generalized hydrodynamic theory and obtain the generalized Langevin

equation of motion for A (q,t) as

aA(qt) = i -A (q,t) - fa K 4(q,,t)-A(q,t-,r)d'r + F(q,t)

(A-2)

In Eq. (A-2), . is the frequency matrix, and is a null matrix for the chosen set of dynamic

variables given in Eq. (A-i). 4 J(q,r) is the relaxation matrix given by:

K(qjx) = <F(q,x)f (q)><AA'> - 1

(A-3)

where F(q,r) is the random force which can be calculated according to:
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q(q,t) = e (A-4)

and

<AA*>-I c< 'r(q) 1'>' 0O(A-5-= I/NmkT (A-5)

where is the Liouville operation and p is the projection operator. Since

F,(q) = ifar (q) = [ +iq(i/mi)Jaei-b (A-6)
J

and from the momentum conservation equation, we have

Fp(q) = i Py(q) = Pt =o = iq oy(q) (A-7)

In the small q limit, the stress tensor ay becomes q-independent, and is given by

l -- Czj + n(D A-](A-8)

and the initial values of F. (q) and Fp (q) become

F,(q) CD ae i~' -  (A-9)

and

Fp(q) =iqarz (A-10)

Using Eqs. (A-4), (A-5), (A-9) and (A-10), we obtain from Eq. (A-3) the relaxation

matrix I (q, r) in the limit of small q as

[K1t(,r) -iqK12(.r)

K~)=iqK21(r) q'i(= (.r) A-

where in the limit of small q,
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K 1 1(r) =-<a (r)L(O)Q>/kTx, (A-12)

with

kTx. =- <1 JE (D 2>  (A- 13)

J

K,,( ) =< < (t) (iar,),>/NmkT (A-14)

K21 (r) = <i a, (t) i,(t)>/KTx,, (A- 15)

and

K(r) = <ayc(t)cy>/NmkT (A-16)

Here the subscript Q in Eq (A-12) designates that the time dependence is taken with

respect to projected Liouville space.

If we write down from Eq. (A-2) the equation for each individual dynamic variable,

we obtain

f(qt = KnC¢)KzJr(qt-?) I -- )P (q t -

Ot fo(A-17)
+ F (qt)

and

P,(q't) =i d K2 ('r) ay (qt-r) - q f K22(rPY(q 't -  r)at (~t)=iq (A-18)
+ FP (qt)

which are equivalent to Eqs. (13) and (14) provided that the random force terms F. (q,t)

and Fp (q,t) are neglected.
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